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Conservation of energy in fluid flow 

 

As a mass m falls a distance h, work is done by gravity and potential energy becomes 

kinetic energy.  Neglecting air resistance … 

 

mgh =  ½mv2 
 
To apply this idea (the conservation of energy) to flowing air or water requires a little 

thought, but the result (due originally to Daniel Bernoulli and still carrying his name) 

is well known.  It is hoped that the derivation below has been set out in sufficient 

detail to allow the reader to carefully follow each step.   

 
 

Imagine that a steady flow of water is pumped to the right from level 1 to level 2 

(figure 1). In the real world drag opposes the motion because water has viscosity (is a 

little bit like honey) and pipes often have sharp bends and sudden changes in radius 

that generate eddies (turbulence) that converts linear kinetic energy to rotational 

energy. In the real world drag and turbulence remove some energy from the flow but 

here we wll neglect these small complications. 

 

 
 

Fig 1 – Water is forced to the right. The flow is slow and the pipe smooth so  
we can neglect any energy loss as heat due to turbulence and viscous drag. 

 

 
The pipe is long and filled with water. Consider the section of water (green), which 

we define as the ‘system’. Work is done on the system at level y1 and by the system at 

level y2.  F1 does work F1∆x1 and F2 does work F2∆x2.  

 



The work done as the system is forced to the right is …  

 

  F1∆x1 – F2∆x2  

 
Remembering that             F1 = P1A1 and F2 = P2A2  

 

     … and                  A1∆x1 = A2∆x2 = ∆V 

 

 The work done    (F1∆x1 – F2∆x2) = (P1 - P2)∆V   … where P1 and P2 are the pressures   

…….        in the fluid at level 1 and level 2.  

 

Over time the element of volume A1∆x1 replaces A2∆x2 on the upper level. If kinetic 

energy is not converted to heat the work done on this element of volume must equal 

the sum of the change in kinetic energy and potential energy.  

 

     (P1 - P2)∆V  = ½∆mv1
2 - ½∆mv2

2 + ∆mgy1- ∆mgy2 
 
If the fluid density is the same everywhere ∆m/∆V =   
 
Rearranging gives ...         P2 + ½v2

2  + gy2 = P1 + ½v1
2  + gy1      …  [1] 

 
 

Equation 1 is a simple form of Bernoulli’s equation. Each term has the units of 

energy density (Joules per cubic metre). In particular note that the energy per 

cubic metre of air at sea level due to its compression is close to 105 J.   

 

 

If we know all the conditions at location 1, and two conditions at location 2, we can 

find the one unknown.  

 

Note: Bernoulli’s equation applies to laminar flow without linear kinetic 

energy loss due to turbulence (chaotic rotations), in a fluid of constant density 

(that is not compressed), when no energy is lost as heat due to viscosity.  

 

In other words: the equation applies only in a situation that is never found in 

practice. In a real water pipe, heat is generated by viscous drag and some 

linear kinetic energy is converted to rotational energy in turbulent eddies. In 

the ducts of an air conditioning system there is always some kinetic energy 

loss due to viscosity and turbulence, and air is compressible.  

 

Physics is the art of approximation. A friction force is not strictly independent of 

velocity, a floor is never quite uniform, flat, or level, normal fluids (air and water) 

have viscosity, and dry leaves fall in air in turbulent flow. Students learn to accept 

that observations made in demonstrations and labs involve uncertainties.  

 

The use of equation 1 is no exception. In real situations when pipes are wide and 

smooth, flow is at low velocities, and viscosity is low, Bernoulli’s equation gives 

values that are correct to within ±10%. At higher velocities, and/or when pipes are 

narrow, rough, and have sharp bends, the principle still holds but the Bernoulli 

equation provides only a first approximation.  



Example 1: a non-uniform pipe 
 

 
     Fig 2 - water flows to the right without turbulence but with some drag due to viscosity. 

 

 

Because the pipe is horizontal, y1 = y2 and equation 1 becomes … 

 

      P2  = P1 + ½ (v1
2 – v2

2)                … [2] 

 
1 The narrow vertical tubes in figure 2 are called pressure taps. The gauge 

pressure P2 (in cm of water) is a little lower than P1 because of viscous drag.  

 

2 Because velocity is increased at 3 the pressure P3 is lower there than that it 

would have been due to viscous drag if the pipe were of uniform cross section.   

 

Note: Bernoulli’s principle has very general application, even when there is 

turbulence and the fluid is compressible. Seal the doors and windows of a flat 

roofed building to keep the pressure inside close to one atmosphere. Watch the 

roof lift off as the building seems to explode in a hurricane.  

  

 

Example 2: water flowing from a tank 
 

A tank of water (figure 3) has a small hole a distance h below the water 

surface. The velocity of the upper water surface as the tank empties (v1 in 

equation 1) is close to zero. The pressure is one atmosphere everywhere so  

P1 = P2. The difference in pressure due to height difference (y1 - y2) is gh.  

 

Equation 1 becomes … 

          ½v2
2  = gh 

 

                        and …                v =  √(2gh)          … [3] 

 
This is Toricelli’s equation that gives the velocity of ejection of water leaving 

a hole in a tank. The velocity is the same as the velocity of an object that has 

fallen a distance h in a gravitational field g. A moment’s thought will show 

that this must be the case: equation 1 is a statement of the conservation of 

energy.  



An ideal case  

 

The diagram below shows an open tank of water with a small hole, a distance 

h below the water surface and a distance h above a flat table. The water stream 

follows a parabola with constant horizontal velocity and acceleration –g in the 

vertical direction.  

 

 
 

Fig 3 - water flows from a small hole near the base of an open tank.  

  
 

1 The velocity of ejection is √(2gh) (from equation 3). This is the horizontal 

velocity of a parabolic motion and is constant.  

 

2 As the water stream moves from (0, h) to (x, 0) the water falls a distance h 

and the vertical velocity increases to - √(2gh) (from the conservation of 

energy). 

 
3 At the point (x, 0) the horizontal and vertical water velocities have the same 

magnitudes and the angle that the water path intersects the horizontal is 45º.  

 

4 The distance x is half the range (R) of a projectile launched from (–x, 0). 

 

R = 2uxuy/g 

 

   = 2√(2gh)√(2gh) g 

 

       = 4h … and the distance x on the diagram is 2h. 

 

Note: in a real case: when the water tank is a cylinder 10 cm in 

diameter and 30 cm high with a wall 3 mm thick and the hole is 3 mm 

in diameter, viscosity and turbulence reduce the ejection velocity 

slightly and air resistance further reduces the range. The intersection 

angle is close to 47º and the range is reduced by 3-5%.  


