
Exponential decay 

 

A counter example  

There is a common belief that the damping of the motion of a pendulum in air is 

exponential, or nearly so, in all situations. To explore the limits of that approximation we 

attach a rod and polystyrene ball to a Vernier angular motion detector. 

Fig 1 – a rod and ball pendulum 

 

At a first glance the amplitude decay appears to be exponential, but an auto-fit that takes 

all points into account is a close fit only over the central five or so periods.  

 

 
 

           Graph 1 – amplitude decay with an exponential decay fit. 

The deviations in amplitude over 30 periods rise to more than ±20%.  



Auto-fitting a sine function with exponential amplitude decay to the first 5 periods 

(Graph 2) and the final five periods (Graph 3) shows that exponential decay is not a good 

approximation in this situation.  

 

 

           Graph 2 – amplitude decay with an exponential decay fit. 

 

 

           Graph 3 – amplitude decay with an exponential decay fit.  

 

The retarding force due to air resistance in turbulent flow is proportional to velocity 

squared. The evidence suggests that this is the dominant component of the damping force 

in this situation.  



Exponential decay: example 1 

Modifying the pendulum by replacing the ball with a flat plate may give a drag force that 

depends on viscosity (is proportional to velocity) provided drag due to turbulence in the 

air and frictional torque in the angular motion detector can be neglected.  

 

 Fig 3 – a rod and vane pendulum 

 

Amplitude decay for this pendulum with an auto-fit including all points as above is 

shown below.  

 

 

Graph 4 – amplitude decay with an exponential decay fit. 

 

The curve fit is very much closer than the corresponding fit when using the ball. 



Again auto-fitting a sine function with exponential amplitude decay to the first 5 periods 

(upper graph) and the final five periods (lower graph) shows that the exponential decay 

model applies within close limits over the full range of 30 periods. 

 

           Graph 5 – amplitude decay with an exponential decay fit. 

 

 
 

           Graph 6 – amplitude decay with an exponential decay fit. 

The curve fits (Graphs 4-6) provide evidence that the damping due to the motion of the 

vane through the air is dominated by viscous drag, not by drag due to turbulence.  

 

Dashpots 

In many situations an oscillation is damped by a dashpot. There are many forms, some 

rely on rotation and some on straight line motion, but all involve the motion (for example 

of a loose fitting piston in a cylinder) in a medium such as oil or air. Drag force is 

approximately proportional to velocity and dashpot-damping is near exponential.   



Exponential decay: example 2 

Water rests in a 5 cm internal diameter tube in the form of a circular arc. When displaced 

the slug of water oscillates about the equilibrium position with simple harmonic motion.  

 

 

Fig 1 – water in plastic tube.  

 

The water motion is in the transition region between laminar and turbulent flow. Adding 

salt to the water to suspend plastic chips and mark the flow shows that water moves as a 

whole over most of its length with localized turbulence within 3 cm of each end.  If 

damping is dominated by viscous drag the amplitude of oscillations will follow an 

exponential decay function because the equation of motion when the retarding force is 

proportional to velocity has an exact solution: a sine function multiplied by an 

exponential decay factor.  

 

 

Graph 7 – data points from video analysis with an auto-fit of a sine function with 

exponential amplitude decay. 

  



The exponential decay function in graph 1 appears to be a good fit to the data points over 

the 12 periods shown.  To confirm the exponential decay model graphs 8 and 9 below 

show fits over restricted period ranges (bold lines).  

 

 

Graph 8 – an auto-fit of a sine function with exponential amplitude decay. 

 

 

Graph 9 – an auto-fit of a sine function with exponential amplitude decay. 

 

Graphs 8 and 9 show that exponential amplitude decay is a satisfactory model in this 

case, indicating that viscous drag, which is proportional to velocity, is the dominant 

damping mechanism in this situation.   


