
Java Programming

Dr. Ferdin Joe John Joseph
Kamnoetvidya Science Academy

Java Vs. Java Script

Java (this is what you need to know for this course)
• A complete programming language developed by Sun
• Can be used to develop either web based or stand-alone

software
• Many pre-created code libraries available
• For more complex and powerful programs

Java Script (not covered in this course)
• A small language that’s mostly used for web-based

applications (run through a web browser like Internet
Explorer, Firefox, Safari, Chrome)

• Good for programming simple special effects for your web
page e.g., roll-overs

Java: History

• Computers of the past

Java: History (2)

• The invention of the microprocessor revolutionized
computers

Intel microprocessor

Commodore Pet microcomputer

Java: History (3)

• It was believed that the logical next

Java History (4)

•Sun Microsystems funded an internal research
project “Green” to investigate this opportunity.

• Result: A programming language called “Oak”

Blatant advertisement: James Gosling was a
graduate of the U of C Computer Science
program.

Java History (5)

• Problem: There was already a programming language
called Oak.

• The “Green” team met at a local coffee shop to come up
with another name...
•Java!

Java: History (6)
•The concept of intelligent devices
didn’t catch on.

•Project Green and work on the Java
language was nearly canceled.

Java: History (7)

•The popularity of the Internet resulted in Sun’s re-
focusing of Java on computers.

•Prior to the advent of Java, web pages allowed you
to download only text and images.

Your computer at home
running a web browser

User clicks on a link

Images and text get
downloaded

Server containing a
web page

Java: Write Once, Run Anywhere
• Consequence of Java’s history:

platform-independence

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code
(part of web
page)

Java: Write Once, Run Anywhere
• Consequence of Java’s history:

platform-independent

Mac user running Safari

Windows user running Internet Explorer

Web page stored on Unix server

Click on link to Applet
Byte code is downloaded

Virtual machine translates byte code to

native Windows code and the Applet is run

Java: Write Once, Run Anywhere
(2)
• But Java can also create standard (non-web based)

programs

Dungeon Master (Java version)
http://homepage.mac.com/aberfield/dmj/

Kung Fu Panda 2: THQ

http://homepage.mac.com/aberfield/dmj/

Java: Write Once, Run Anywhere
(3)
• Java has been used by large and reputable

companies to create serious stand-alone
applications.

• Example:
• Eclipse1: started as a programming environment created

by IBM for developing Java programs. The program
Eclipse was itself written in Java.

1 For more information: http://www.eclipse.org/downloads/

http://www.eclipse.org/downloads/

Compiled Programs With Different
Operating Systems

Windows
compiler

Executable (Windows)

UNIX
compiler

Executable (UNIX)

Mac OS
compiler

Executable (Mac)

Computer
program

A High Level View Of
Translating/Executing Java Programs

Java compiler
(javac)

Java program

Filename.java

Java
bytecode
(generic
binary)

Filename.class

Stage 1: Compilation

A High Level View Of
Translating/Executing Java Programs
(2)

Java interpreter
(java)

Java
bytecode
(generic
binary)

Filename.class

Machine language
instruction (UNIX)

Machine language
instruction (Windows)

Machine language
instruction (Apple)

Stage 2: Interpreting and executing the byte code

Which Java?

•Java 6+ JDK (Java Development Kit), Standard
Edition includes:

• JDK (Java development kit) – for developing Java
software (creating Java programs.

• JRE (Java Runtime environment) – only good for running
pre-created Java programs.

•Java Plug-in – a special version of the JRE designed to run through
web browsers.

http://java.sun.com/javase/downloads/index.jsp

Smallest Compilable And
Executable Java Program
The name of the online example is: Smallest.java
(Important note: file name matches the word after the keyword
‘class’)

public class Smallest
{

public static void main (String[] args)
{
}

}

Creating, Compiling And Running Java
Programs On The Computer Science
Network

javac

Java compiler

Java byte code
filename.class

(UNIX file)To compile the program at the
command line type "javac
filename.java"

To run the interpreter, at
the command line type
"java filename"

jav
a

Java Interpreter

Type it in with the text editor of your choice

filename.java

(Unix file)

Java program

Compiling The Smallest Java
Program

public class Smallest
{

public static void main (String[] args)
{
}

}

Smallest.java

javac

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

Type “javac
Smallest.java”

Running The Smallest Java
Program

(Java byte code)
10000100000001000
00100100000001001

: :

Smallest.class

java

Type “java Smallest” (Platform/Operating specific binary
10100111000001000
00100111001111001

: :

Documentation / Comments

Multi-line documentation
/* Start of documentation
*/ End of documentation

Documentation for a single line
//Everything until the end of the line is a comment

Review: What Should You
Document
• Program (or that portion of the program) author
• What does the program as a while do e.g., tax program.
• What are the specific features of the program e.g., it

calculates personal or small business tax.
• What are it’s limitations e.g., it only follows Canadian

tax laws and cannot be used in the US. In Canada it
doesn’t calculate taxes for organizations with yearly
gross earnings over $1 billion.

• What is the version of the program
• If you don’t use numbers for the different versions of your

program then consider using dates (tie versions with program
features).

Important Note

• Each Java instruction must be followed by a semi-
colon!
General format

Instruction1;

Instruction2;

Instruction3;

: :

Examples

int num = 0;

System.out.println(num);

: :

Java Output

•Format:
System.out.print(<string or variable name one> + <string or variable name two>..);
OR
System.out.println(<string or variable name one> + <string or variable name two>..);

•Examples (online program called “OutputExample1.java”)

public class OutputExample1
{

public static void main (String [] args)
{

int num = 123; // More on this shortly
System.out.println("Good-night gracie!");
System.out.print(num);
System.out.println("num="+num);

}
}

Output : Some Escape Sequences For
Formatting

Escape sequence Description

\t Horizontal tab

\r Carriage return

\n New line

\” Double quote

\\ Backslash

Example Formatting Codes

• Name of the online example: FormattingExample.java

public class FormattingExample
{

public static void main (String [] args)
{

System.out.print("lol\tz\n");
System.out.println("hello\rworld");
System.out.println("\"Geek\" talk slash (\\) com");

}
}

Variables

• Unlike Python variables must be declared before they
can be used.

• Variable declaration:
• Creates a variable in memory.
• Specify the name of the variable as well as the type of

information that it will store.
• E.g. int num;
• Although requiring variables to be explicitly declared appears

to be an unnecessary chore it can actually be useful for
minimizing insidious logic errors.

• Using variables
• Only after a variable has been declared can it be used.
• E.g., num = 12;

Declaring Variables: Syntax

• Format:
<type of information> <name of variable>;

• Example:
char myFirstInitial;

• Variables can be initialized (set to a starting value)
as they’re declared:

char myFirstInitial = ‘j’;
int age = 30;

Some Built-In Types Of Variables
In Java

Type Description
byte 8 bit signed integer

short 16 but signed integer

int 32 bit signed integer

long 64 bit signed integer

float 32 bit signed real number

double 64 bit signed real number

char 16 bit Unicode character (ASCII and
beyond)

boolean 1 bit true or false value

String A sequence of characters between double
quotes ("")

Location Of Variable Declarations

public class <name of class>
{

public static void main (String[] args)
{

// Local variable declarations occur here

<< Program statements >>
: :

}
}

Style Hint: Initializing Variables

• Always initialize your variables prior to using them!
• Do this whether it is syntactically required or not.

• Example how not to approach:

public class OutputExample1
{

public static void main (String [] args)
{

int num;
System.out.print(num);

}
} OutputExample1.java:7: error: variable num

might not have been initialized
System.out.print(num);

^

Java Constants

Reminder: constants are like variables in that they
have a name and store a certain type of information
but unlike variables they CANNOT change. (Unlike
Python this is syntactically enforced…hurrah!).

Format:
final <constant type> <CONSTANT NAME> = <value>;

Example:
final int SIZE = 100;

Location Of Constant Declarations

public class <name of class>
{

public static void main (String[] args)
{

// Local constant declarations occur here (more later)
// Local variable declarations

< Program statements >>
: :

}
}

Why Use Constants?

1. They make your program easier to read and
understand

populationChange = (0.1758 – 0.1257) *
currentPopulation;

Vs.
final float BIRTH_RATE = 17.58;
final float MORTALITY_RATE = 0.1257;
int currentPopulation = 1000000;
populationChange = (BIRTH_RATE -

MORTALITY_RATE) * currentPopulation;

Why Use Constants? (2)

2. It can make your program easier to maintain
(update with changes).

• If the constant is referred to several times throughout
the program, changing the value of the constant once
will change it throughout the program.

Why Use Constants? (3)
final float BIRTH_RATE = 0.1758;
final float MORTALITY_RATE = 0.1257;
float populationChange = 0;
float currentPopulation = 1000000;
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation;
if (populationChange > 0)

System.out.println("Increase“)
System.out.println("Birth rate:“+ BIRTH_RATE + " Mortality rate:“ +

MORTALITY_RATE, " + Population change:“ + populationChange);
else if (populationChange < 0)

System.out.println("Decrease“);
System.out.println("Birth rate:“+BIRTH_RATE, “+Mortality rate:“+ MORTALITY_RATE

+"Population change:“+populationChange);
else

System.out.print("No change“);
System.out.print("Birth rate:“+BIRTH_RATE, “+Mortality rate:“+ MORTALITY_RATE+

"Population change:“+populationChange);

Why Use Constants? (4)
final float BIRTH_RATE = 0.5;
final float MORTALITY_RATE = 0.1257;
float populationChange = 0;
float currentPopulation = 1000000;
populationChange = (BIRTH_RATE - MORTALITY_RATE) * currentPopulation;
if (populationChange > 0)

System.out.println("Increase“)
System.out.println("Birth rate:“+ BIRTH_RATE + " Mortality rate:“ +

MORTALITY_RATE, " + Population change:“ + populationChange);
else if (populationChange < 0)

System.out.println("Decrease“);
System.out.println("Birth rate:“+BIRTH_RATE, “+Mortality rate:“+ MORTALITY_RATE

+"Population change:“+populationChange);
else

System.out.print("No change“);
System.out.print("Birth rate:“+BIRTH_RATE, “+Mortality rate:“+ MORTALITY_RATE+

"Population change:“+populationChange);

One change in the
initialization of the
constant changes all
references to that
constant.

Variable Naming Conventions In
Java
• Compiler requirements

• Can’t be a keyword nor can the names of the special
constants: true, false or null be used

• Can be any combination of letters, numbers, underscore or
dollar sign (first character must be a letter or underscore)

• Common stylistic conventions
• The name should describe the purpose of the variable
• Avoid using the dollar sign
• With single word variable names, all characters are lower case

•e.g., double grades;
• Multiple words are separated by capitalizing the first letter of

each word except for the first word
•e.g., String firstName = “James”;

Java Keywords

abstract boolean break byte case catch char

class const continue default do double else

extends final finally float for goto if

implements import instanceof int interface long native

new package private protected public return short

static super switch synchronized this throw throws

transient try void volatile while

Common Java Operators / Operator
Precedence
Precedence
level

Operator Description Associativity

1 expression++
expression--

Post-increment
Post-decrement

Right to left

2 ++expression
--expression
+
-
!
~
(type)

Pre-increment
Pre-decrement
Unary plus
Unary minus
Logical negation
Bitwise complement
Cast

Right to left

Common Java Operators / Operator
Precedence

Precedence
level

Operator Description Associativity

3 *
/
%

Multiplication
Division
Remainder/modulus

Left to right

4 +

-

Addition or String
concatenation
Subtraction

Left to right

5 <<
>>

Left bitwise shift
Right bitwise shift

Left to right

Common Java Operators / Operator
Precedence
Precedence
level

Operator Description Associativity

6 <
<=
>
>=

Less than
Less than, equal to
Greater than
Greater than, equal to

Left to right

7 = =
!=

Equal to
Not equal to

Left to right

8 & Bitwise AND Left to right

9 ^ Bitwise exclusive OR Left to right

Common Java Operators / Operator
Precedence
Precedence
level

Operator Description Associativity

10 | Bitwise OR Left to right

11 && Logical AND Left to right

12 || Logical OR Left to right

Common Java Operators / Operator
Precedence
Precedence
level

Operator Description Associativity

13 =
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

Assignment
Add, assignment
Subtract, assignment
Multiply, assignment
Division, assignment
Remainder, assignment
Bitwise AND, assignment
Bitwise XOR, assignment
Bitwise OR, assignment
Left shift, assignment
Right shift, assignment

Right to left

Post/Pre Operators
The name of the online example is: Order1.java

public class Order1
{

public static void main (String [] args)
{

int num = 5;
System.out.println(num);
num++;
System.out.println(num);
++num;
System.out.println(num);
System.out.println(++num);
System.out.println(num++);

}
}

Post/Pre Operators (2)

The name of the online example is: Order2.java

public class Order2
{

public static void main (String [] args)
{

int num1;
int num2;
num1 = 5;
num2 = ++num1 * num1++;
System.out.println("num1=" + num1);
System.out.println("num2=" + num2);

}
}

Unary
Operator/Order/Associativity
The name of the online example: Unary_Order3.java

public class Unary_Order3.java
{

public static void main (String [] args)
{

int num = 5;
float fl;
System.out.println(num);
num = num * -num;
System.out.println(num);

}
}

Accessing Pre-Created Java
Libraries
• It’s accomplished by placing an ‘import’ of the

appropriate library at the top of your program.
• Syntax:

import <Full library name>;

• Example:
import java.util.Scanner;

Getting Text Input

• You can use the pre-written methods (functions) in
the Scanner class.

• General structure:
import java.util.Scanner;

main (String [] args)
{

Scanner <name of scanner> = new Scanner (System.in);
<variable> = <name of scanner> .<method> ();

}

Creating a
scanner object
(something that
can scan user
input)

Using the capability of the
scanner object (actually
getting user input)

Getting Text Input (2)

The name of the online example: MyInput.java

import java.util.Scanner;

public class MyInput
{

public static void main (String [] args)
{

String str1;
int num1;
Scanner in = new Scanner (System.in);
System.out.print ("Type in an integer: ");
num1 = in.nextInt ();
System.out.print ("Type in a line: ");
in.nextLine ();
str1 = in.nextLine ();
System.out.println ("num1:" +num1 +"\t str1:" + str1);

}
}

Useful Methods Of Class Scanner1

• nextInt ()
• nextLong ()
• nextFloat ()
• nextDouble ()
• nextLine ();

1 Online documentation: http://java.sun.com/javase/6/docs/api/

http://java.sun.com/javase/6/docs/api/

Reading A Single Character

• Text menu driven programs may require this capability.
• Example:

GAME OPTIONS
(a)dd a new player
(l)oad a saved game
(s)ave game
(q)uit game

• There’s different ways of handling this problem but one
approach is to extract the first character from the
string.

• Partial example:
String s = "boo“;
System.out.println(s.charAt(0));

Reading A Single Character

• Name of the (more complete example):MyInputChar.java

import java.util.Scanner;
public class MyInputChar
{

public static void main (String [] args)
{

final int FIRST = 0;
String selection;
Scanner in = new Scanner (System.in);
System.out.println("GAME OPTIONS");
System.out.println("(a)dd a new player");
System.out.println("(l)oad a saved game");
System.out.println("(s)ave game");
System.out.println("(q)uit game");
System.out.print("Enter your selection: ");

Reading A Single Character (2)

selection = in.nextLine ();
System.out.println ("Selection: " + selection.charAt(FIRST));

}
}

Decision Making In Java

• Java decision making constructs
• if
• if, else
• if, else-if
• switch

Decision Making: Logical Operators

Logical Operation Python Java

AND and &&

OR or ||

NOT not, ! !

Decision Making: If

Format:
if (Boolean Expression)

Body

Example:
if (x != y)

System.out.println("X and Y are not equal");

if ((x > 0) && (y > 0))
{

System.out.println("X and Y are positive");
}

• Indenting the body of
the branch is an
important stylistic
requirement of Java
but unlike Python it is
not enforced by the
syntax of the
language.

• What distinguishes the
body is either:

1.A semi colon (single
statement branch)

2.Braces (a body that
consists of multiple
statements)

Decision Making: If, Else

Format:
if (Boolean expression)

Body of if
else

Body of else

Example:
if (x < 0)

System.out.println("X is negative");
else

System.out.println("X is non-negative");

Example Program: If-Else

• Name of the online example: BranchingExample1.java

import java.util.Scanner;

public class BranchingExample1
{

public static void main (String [] args)
{

Scanner in = new Scanner(System.in);
final int WINNING_NUMBER = 131313;
int playerNumber = -1;

System.out.print("Enter ticket number: ");
playerNumber = in.nextInt();
if (playerNumber == WINNING_NUMBER)
System.out.println("You're a winner!");

else
System.out.println("Try again.");

}
}

If, Else-If

Format:
if (Boolean expression)

Body of if
else if (Boolean expression)
Body of first else-if

: : :
else if (Boolean expression)
Body of last else-if

else
Body of else

If, Else-If (2)

Name of the online example: BranchingExample.java

import java.util.Scanner;

public class BranchingExample2
{

public static void main (String [] args)
{

Scanner in = new Scanner(System.in);
int gpa = -1;
System.out.print("Enter letter grade: ");
gpa = in.nextInt();

If, Else-If (3)
if (gpa == 4)

System.out.println("A");
else if (gpa == 3)

System.out.println("B");
else if (gpa == 2)

System.out.println("C");
else if (gpa == 1)

System.out.println("D");
else if (gpa == 0)

System.out.println("F");
else

System.out.println("Invalid letter grade");
}

}

Branching: Common Mistakes

• Recall that for single bodies: what lies between the closing
bracket of the Boolean expression and the next semi-colon
is the body.

if (Boolean Expression)
instruction;

if (Boolean Expression) instruction;

if (Boolean Expression)
instruction1;
Instruction2;

body

body

body

Branching: Now What
Happens???

if (Boolean Expression):
instruction1;

instruction2;

Alternative To Multiple Else-If’s:
SwitchFormat (character-based switch):
switch (character variable name)
{

case '<character value>':
Body
break;

case '<character value>':
Body
break;

:
default:

Body
}

1 The type of variable in the brackets can be a byte, char, short, int or long

Important! The break is
mandatory to separate
Boolean expressions (must
be used in all but the last)

Alternative To Multiple Else-If’s:
Switch (2)Format (integer based switch):
switch (integer variable name)
{

case <integer value>:
Body
break;

case <integer value>:
Body
break;

:
default:

Body
}

1 The type of variable in the brackets can be a byte, char, short, int or long

Switch: When To Use/When Not
To Use
• Benefit (when to use):

• It may produce simpler code than using an if-elseif (e.g.,
if there are multiple compound conditions)

Switch: When To Use/When Not
To Use (2)
• Name of the online example: SwitchExample.java

import java.util.Scanner;

public class SwitchExample
{

public static void main (String [] args)
{

final int FIRST = 0;
String line;
char letter;
int gpa;
Scanner in = new Scanner (System.in);
System.out.print("Enter letter grade: ");

Switch: When To Use/When Not
To Use (3)

line = in.nextLine ();
letter = line.charAt(FIRST);
switch (letter)
{

case 'A':
case 'a':

gpa = 4;
break;

case 'B':
case 'b':

gpa = 3;
break;

case 'C':
case 'c':

gpa = 2;
break;

Switch: When To Use/When Not
To Use (4)

case 'D':
case 'd':

gpa = 1;
break;

case 'F':
case 'f':

gpa = 0;
break;

default:
gpa = -1;

}
System.out.println("Letter grade: " + letter);
System.out.println("Grade point: " + gpa);

}
}

Switch: When To Use/When Not
To Use (5)
• When a switch can’t be used:

• For data types other than characters or integers
• Boolean expressions that aren’t mutually exclusive:

• As shown a switch can replace an ‘if-elseif’ construct
• A switch cannot replace a series of ‘if’ branches).

• Example when not to use a switch:
if (x > 0)

System.out.print(“X coordinate right of the origin”);
If (y > 0)

System.out.print(“Y coordinate above the origin”);
• Example of when not to use a switch:

String name = in.readLine()
switch (name)
{

}

Switch Example: Modified

• What happens if all the ‘break’ instructions have
been removed?

Loops

Java Pre-test loops
• For
• While

Java Post-test loop
• Do-while

While Loops

Format:
while (Boolean expression)

Body

Example:
int i = 1;
while (i <= 4)
{

// Call function
createNewPlayer();
i = i + 1;

}

For Loops

Format:
for (initialization; Boolean expression; update control)

Body

Example:
for (i = 1; i <= 4; i++)
{

// Call function
createNewPlayer();
i = i + 1;

}

Presenter
Presentation Notes

Post-Test Loop: Do-While

• Recall: Post-test loops evaluate the Boolean
expression after the body of the loop has executed.

• This means that post test loops will execute one or
more times.

• Pre-test loops generally execute zero or more
times.

Do-While Loops

Format:
do

Body
while (Boolean expression);

Example:
char ch = 'A';
do
{

System.out.println(ch);
ch++;

}
while (ch <= 'K');

Contrasting Pre Vs. Post Test
Loops
• Although slightly more work to implement the

while loop is the most powerful type of loop.
• Program capabilities that are implemented with

either a ‘for’ or ‘do-while’ loop can be implemented
with a while loop.

• Implementing a post test loop requires that the
loop control be primed correctly (set to a value
such that the Boolean expression will evaluate to
true the first it’s checked).

Example: Post-Test
Implementation
• Name of the online example: PostTestExample.java

public class PostTestExample

{

public static void main (String [] args)

{

final int FIRST = 0;

Scanner in = new Scanner(System.in);

char answer;

String temp;

do

{

System.out.println("JT's note: Pretend that we play our game");

System.out.print("Play again? Enter 'q' to quit: ");

temp = in.nextLine();

answer = temp.charAt(FIRST);

} while ((answer != 'q') && (answer != 'Q'));

}

}

Example: Pre-Test Implementation
public class PreTestExample
{

public static void main (String [] args)
{

final int FIRST = 0;
Scanner in = new Scanner(System.in);
char answer = ' ';
String temp;
while ((answer != 'q') && (answer != 'Q'))
{

System.out.println("JT's note: Pretend that we play our game");
System.out.print("Play again? Enter 'q' to quit: ");
temp = in.nextLine();
answer = temp.charAt(FIRST);

}
}

}

Now What Happens???
import java.util.Scanner;

public class PreTestExample
{

public static void main (String [] args)
{

final int FIRST = 0;
Scanner in = new Scanner(System.in);
char answer = ' ';
String temp;
while ((answer != 'q') && (answer != 'Q'))

System.out.println("JT's note: Pretend that we play our game");
System.out.print("Play again? Enter 'q' to quit: ");
temp = in.nextLine();
answer = temp.charAt(FIRST);

}
}

After This Section You Should Now
Know
• How Java was developed and the impact of it's roots on

the language
• The basic structure required in creating a simple Java

program as well as how to compile and run programs
• How to document a Java program
• How to perform text based input and output in Java
• The declaration of constants and variables
• What are the common Java operators and how they

work
• The structure and syntax of decision making and

looping constructs

	Java Programming��Dr. Ferdin Joe John Joseph�Kamnoetvidya Science Academy
	Java Vs. Java Script
	Java: History
	Java: History (2)
	Java: History (3)
	Java History (4)
	Java History (5)
	Java: History (6)
	Java: History (7)
	Java: Write Once, Run Anywhere
	Java: Write Once, Run Anywhere
	Java: Write Once, Run Anywhere (2)
	Java: Write Once, Run Anywhere (3)
	Compiled Programs With Different �Operating Systems
	A High Level View Of Translating/Executing Java Programs
	A High Level View Of Translating/Executing Java Programs (2)
	Which Java?
	Smallest Compilable And Executable Java Program
	Creating, Compiling And Running Java Programs On The Computer Science Network
	Compiling The Smallest Java Program
	Running The Smallest Java Program
	Documentation / Comments
	Review: What Should You Document
	Important Note
	Java Output
	Output : Some Escape Sequences For Formatting
	Example Formatting Codes
	Variables
	Declaring Variables: Syntax
	Some Built-In Types Of Variables In Java
	Location Of Variable Declarations
	Style Hint: Initializing Variables
	Java Constants
	Location Of Constant Declarations
	Why Use Constants?
	Why Use Constants? (2)
	Why Use Constants? (3)
	Why Use Constants? (4)
	Variable Naming Conventions In Java
	Java Keywords
	Common Java Operators / Operator Precedence
	Common Java Operators / Operator Precedence
	Common Java Operators / Operator Precedence
	Common Java Operators / Operator Precedence
	Common Java Operators / Operator Precedence
	Post/Pre Operators
	Post/Pre Operators (2)
	Unary Operator/Order/Associativity
	Accessing Pre-Created Java Libraries
	Getting Text Input
	Getting Text Input (2)
	Useful Methods Of Class Scanner1
	Reading A Single Character
	Reading A Single Character
	Reading A Single Character (2)
	Decision Making In Java
	Decision Making: Logical Operators
	Decision Making: If
	Decision Making: If, Else
	Example Program: If-Else
	If, Else-If
	If, Else-If (2)
	If, Else-If (3)
	Branching: Common Mistakes
	Branching: Now What Happens???
	Alternative To Multiple Else-If’s: Switch
	Alternative To Multiple Else-If’s: Switch (2)
	Switch: When To Use/When Not To Use
	Switch: When To Use/When Not To Use (2)
	Switch: When To Use/When Not To Use (3)
	Switch: When To Use/When Not To Use (4)
	Switch: When To Use/When Not To Use (5)
	Switch Example: Modified
	Loops
	While Loops
	For Loops
	Post-Test Loop: Do-While
	Do-While Loops
	Contrasting Pre Vs. Post Test Loops
	Example: Post-Test Implementation
	Example: Pre-Test Implementation
	Now What Happens???
	After This Section You Should Now Know

