
String Handling

Dr. Ferdin Joe John Joseph

Objectives
• Review of last class

• Strings.

• String Operations.

• StringBuffer.

• StringBuffer Operations.

Strings

• Java string is a sequence of characters. They are objects of
type String.

• Once a String object is created it cannot be changed. Stings
are Immutable.

• To get changeable strings use the class called StringBuffer.
• String and StringBuffer classes are declared final, so there

cannot be subclasses of these classes.
• The default constructor creates an empty string.

String s = new String();

Creating Strings

• String str = "abc"; is equivalent to:
char data[] = {'a', 'b', 'c'};

String str = new String(data);

• If data array in the above example is modified after the
string object str is created, then str remains unchanged.

• Construct a string object by passing another string object.
String str2 = new String(str);

String Operations
• The length() method returns the length of the string.

Eg: System.out.println(“Hello”.length()); // prints 5
• The + operator is used to concatenate two or more strings.

Eg: String myname = “Harry”
String str = “My name is” + myname+ “.”;

• For string concatenation the Java compiler converts an
operand to a String whenever the other operand of the + is
a String object.

String Operations

• Characters in a string can be extracted in a number of
ways.

public char charAt(int index)
– Returns the character at the specified index. An index

ranges from 0 to length() - 1. The first character of the
sequence is at index 0, the next at index 1, and so on, as
for array indexing.

char ch;

ch = “abc”.charAt(1); // ch = “b”

String Operations

• getChars() - Copies characters from this string into the
destination character array.
public void getChars(int srcBegin, int srcEnd,
char[] dst, int dstBegin)

– srcBegin - index of the first character in the string to copy.
– srcEnd - index after the last character in the string to copy.
– dst - the destination array.
– dstBegin - the start offset in the destination array.

String Operations
• equals() - Compares the invoking string to the specified object. The

result is true if and only if the argument is not null and is a String
object that represents the same sequence of characters as the invoking
object.
public boolean equals(Object anObject)

• equalsIgnoreCase()- Compares this String to another String, ignoring
case considerations. Two strings are considered equal ignoring case if
they are of the same length, and corresponding characters in the two
strings are equal ignoring case.
public boolean equalsIgnoreCase(String
anotherString)

String Operations

• startsWith() – Tests if this string starts with the specified
prefix.
public boolean startsWith(String prefix)
“Figure”.startsWith(“Fig”); // true

• endsWith() - Tests if this string ends with the specified
suffix.

public boolean endsWith(String suffix)

“Figure”.endsWith(“re”); // true

String Operations

• startsWith() -Tests if this string starts with the specified
prefix beginning at a specified index.
public boolean startsWith(String prefix,
int toffset)

prefix - the prefix.

toffset - where to begin looking in the
string.

“figure”.startsWith(“gure”, 2); // true

String Operations
• compareTo() - Compares two strings lexicographically.

– The result is a negative integer if this String object
lexicographically precedes the argument string.

– The result is a positive integer if this String object
lexicographically follows the argument string.

– The result is zero if the strings are equal.
– compareTo returns 0 exactly when the equals(Object) method

would return true.

public int compareTo(String anotherString)

public int compareToIgnoreCase(String str)

String Operations
indexOf – Searches for the first occurrence of a character or substring.

Returns -1 if the character does not occur.

public int indexOf(int ch)- Returns the index within this
string of the first occurrence of the specified character.
public int indexOf(String str) - Returns the index
within this string of the first occurrence of the specified substring.

String str = “How was your day today?”;
str.indexof(‘t’);
str(“was”);

String Operations
public int indexOf(int ch, int fromIndex)- Returns

the index within this string of the first occurrence of the specified
character, starting the search at the specified index.

public int indexOf(String str, int fromIndex) -
Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index.

String str = “How was your day today?”;
str.indexof(‘a’, 6);
str(“was”, 2);

String Operations

lastIndexOf() –Searches for the last occurrence of a character
or substring. The methods are similar to indexOf().

substring() - Returns a new string that is a substring of this
string. The substring begins with the character at the
specified index and extends to the end of this string.

public String substring(int beginIndex)

Eg: "unhappy".substring(2) returns "happy"

String Operations

• public String
substring(int beginIndex,
int endIndex)

Eg: "smiles".substring(1, 5)
returns "mile“

String Operations

concat() - Concatenates the specified string to the end of this
string.
If the length of the argument string is 0, then this String
object is returned.
Otherwise, a new String object is created, containing the
invoking string with the contents of the str appended to it.

public String concat(String str)
"to".concat("get").concat("her") returns

"together"

String Operations

• replace()- Returns a new string resulting from replacing all
occurrences of oldChar in this string with newChar.

public String replace(char oldChar, char newChar)

"mesquite in your cellar".replace('e', 'o')

returns "mosquito in your collar"

String Operations
• trim() - Returns a copy of the string, with leading and

trailing whitespace omitted.
public String trim()

String s = “ Hi Mom! “.trim();
S = “Hi Mom!”

• valueOf() – Returns the string representation of the char
array argument.

public static String valueOf(char[] data)

String Operations
• The contents of the character array are copied; subsequent

modification of the character array does not affect the
newly created string.

Other forms are:
public static String valueOf(char c)
public static String valueOf(boolean b)
public static String valueOf(int i)
public static String valueOf(long l)
public static String valueOf(float f)
public static String valueOf(double d)

String Operations

• toLowerCase(): Converts all of the characters in a String
to lower case.

• toUpperCase(): Converts all of the characters in this
String to upper case.

public String toLowerCase()
public String toUpperCase()

Eg: “HELLO THERE”.toLowerCase();

“hello there”.toUpperCase();

StringBuffer

• A StringBuffer is like a String, but can be modified.
• The length and content of the StringBuffer sequence can be

changed through certain method calls.
• StringBuffer defines three constructors:

– StringBuffer()
– StringBuffer(int size)
– StringBuffer(String str)

StringBuffer Operations

• The principal operations on a StringBuffer are the append
and insert methods, which are overloaded so as to accept
data of any type.

Here are few append methods:
StringBuffer append(String str)
StringBuffer append(int num)

• The append method always adds these characters at the end
of the buffer.

StringBuffer Operations

• The insert method adds the characters at a specified point.

Here are few insert methods:
StringBuffer insert(int index, String str)
StringBuffer append(int index, char ch)

Index specifies at which point the string will be inserted into
the invoking StringBuffer object.

StringBuffer Operations

• delete() - Removes the characters in a substring of this
StringBuffer. The substring begins at the specified start and
extends to the character at index end - 1 or to the end of the
StringBuffer if no such character exists. If start is equal to
end, no changes are made.

public StringBuffer delete(int start, int end)

StringBuffer Operations

• replace() - Replaces the characters in a substring of this
StringBuffer with characters in the specified String.

public StringBuffer replace(int start, int end,
String str)

• substring() - Returns a new String that contains a
subsequence of characters currently contained in this
StringBuffer. The substring begins at the specified index
and extends to the end of the StringBuffer.

public String substring(int start)

StringBuffer Operations

• reverse() - The character sequence contained in this string
buffer is replaced by the reverse of the sequence.

public StringBuffer reverse()

• length() - Returns the length of this string buffer.
public int length()

StringBuffer Operations

• capacity() - Returns the current capacity of the String
buffer. The capacity is the amount of storage available for
newly inserted characters.

public int capacity()

• charAt() - The specified character of the sequence
currently represented by the string buffer, as indicated by
the index argument, is returned.

public char charAt(int index)

StringBuffer Operations

• getChars() - Characters are copied from this string buffer
into the destination character array dst. The first character
to be copied is at index srcBegin; the last character to be
copied is at index srcEnd-1.
public void getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin)

• setLength() - Sets the length of the StringBuffer.
public void setLength(int newLength)

Examples: StringBuffer

StringBuffer sb = new StringBuffer(“Hello”);

sb.length(); // 5

sb.capacity(); // 21 (16 characters room is
added if no size is specified)

sb.charAt(1); // e

sb.setCharAt(1,’i’); // Hillo

sb.setLength(2); // Hi

sb.append(“l”).append(“l”); // Hill

sb.insert(0, “Big “); // Big Hill

Examples: StringBuffer

sb.replace(3, 11, “”); // Big

sb.reverse(); // gib

	Slide Number 1
	Slide Number 2
	Strings
	Creating Strings
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	String Operations
	StringBuffer
	StringBuffer Operations
	StringBuffer Operations
	StringBuffer Operations
	StringBuffer Operations
	StringBuffer Operations
	StringBuffer Operations
	StringBuffer Operations
	Examples: StringBuffer
	Examples: StringBuffer

