Digital Logic Structures

Ferdin Joe John Joseph

Transistor: Building Block of
Computers

 Microprocessors contain millions of transistors

e Intel Pentium II: 7 million
e Compaq Alpha 21264: 15 million
* |Intel Pentium Ill: 28 million

e Logically, each transistor acts as a switch

 Combined to implement logic functions
* AND, OR, NOT

e Combined to build higher-level structures
e Adder, multiplexor, decoder, register, ...

e Combined to build processor
e LC-2

Simple Switch Circuit

e Switch open:
* No current through circuit
e Lightis off
* V1S +2.9V

l F
T e Switch closed:
2.9\/ - Vout . . .
e Short circuit across switch

- e Current flows
e Lightison
e V. isQV

out

can easily represent two states:
on/off, open/closed, voltage/no voltage.

. Use %m Gates

itch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.

e Digital symbols:

e recall that we assign a range of analog voltages to each
digital (logic) symbol

Digital Values » = “0” lllegal A
i i I
I I

Analog Values » (0.5 2.4 2.9 \olts

e assignment of voltage ranges depends on
electrical properties of transistors being used

e typical values for "1": 45V, +3.3V, +2.9V
e from now on we'll use +2.9V

CMOQOS Circuit

e Complementary MOS

e Uses both N-type and P-type MOS transistors
* P-type
e Attached to + voltage
e Pulls output voltage UP when input is zero
* N-type
e Attached to GND
e Pulls output voltage DOWN when input is one

e For all inputs, make sure that output is either connected to GND or to +,
but not both!

Inverter

In —

In

(NOT Gate)

oV
29V

_CI In
— Out
Truth table
< /
Out In Out In
29V 0 1
oV 1 0

NOR Gate

AT—

B ++—d

N A4

Note: Serial structure on top, parallel on bottom.

A=0 |:p
B=1- C P
——c=0
— |~ N
=~ =~
A B| C
0 0] 1
0 1| O
1 0| O
1 1| 0

= = O Ol X
_ O + O|

~ ~ r ol

Add inverter to NOR.

NAND Gate (AND-N
A=

AT 9

Note: Parallel structure on top, serial on bottom.

0

B=1—

~ , O ol>»

R O F O @

o L Rr|O

1

AND Gate

-

_ = O Ol X
R O - OoO|m

R O O o]0

Add inverter to NAND.

Basic Logic Gates

NOT

w >
>
+
o

T>
3
+
o

OR NOR

w >
Hj
%
w >
w
5

AND NAND

More than 2 Inputs?
 AND/OR can take any number of inputs.

e AND =1 if all inputs are 1.
e OR=1ifany inputis 1.
e Similar for NAND/NOR.

e Can implement with multiple two-input gates,
or with single CMOS circuiit.

A — _
B — ABC
() —

R S

=P

Practice

* Implement a 3-input NOR gate with CMOS.

Logical Completeness

e Can implement ANY truth table with AND, OR, NOT.
ABC|ID A B C 1. AND combinations
O 0 0] O that yield a "1" in the
o 0o 110 truth table.

0 1 0] 1 4
M J
2. OR the results

10 010 of the AND gates.
1 0 1] 1 v
1 1 0] o0

D
1 1 1|0

Practice

* Implement the following truth table.

A B| C
O 0| O
O 1|1
1 0] 1
1 110

DeMorgan's Law

e Converting AND to OR (with some help from NOT)

e Consider the following gate:

A—0O =
B—C} Ao

A

B

B

© O B k|3
O + o |

o O O Bk

Same as A+Bl!

To convert AND to OR
(or vice versa),
Invert inputs and output.

Summary

* MQOS transistors are used as switches to implement
logic functions.

e N-type: connect to GND, turn on (with 1) to pull down to O
e P-type: connect to +2.9V, turn on (with 0) to pullup to 1

e Basic gates: NOT, NOR, NAND
e Logic functions are usually expressed with AND, OR, and NOT

* Properties of logic gates

e Completeness
e can implement any truth table with AND, OR, NOT

e DeMorgan's Law
e convert AND to OR by inverting inputs and output

Building Functions from Logic
Gates

e We've already seen how to implement truth tables
usin%AND, OR, and NOT -- an example of
combinational logic.

e Combinational Logic Circuit
e output depends only on the current inputs
e stateless

e Sequential Logic Circuit
e output depends on the sequence of inputs (past and present)
e stores information (state) from past inputs

* We'll first look at some useful combinational circuits,
then show how to use sequential circuits to store
information.

Decoder

* ninputs, 2" outputs
e exactly one output is 1 for each possible input pattern
A *

C 1, if AB=00
B—1 o::}_
O} 1, if AB=01
2-bit
decoder ._} |
1, if AB=10
} 1. if AB=11

Multiplexer (MUX)

* n-bit selector and 2" inputs, one output
A outpuBequals &ne of thPinputs, depending on selector

] " - S1
1 I S,
L) U ABCD
7
\ | fe——S

A, if 5=00
. B, if $=01
L C,if S=10

D, if S=11 4-to-1 MUX

Full Adder

B

Sl

A

e Add two bits and carry-in,

g

0

1

IO

-
| o O —H O «dA «
@)
0n | o - O +€H O O
C
gl O d O 4 O +H
m|o A 4 O O d d
< |o O O H «H «d -+

Cout

Four-bit Adder

A3 B3 AZ BZ

A B A B
Full © Full ©

Adder Adder

C.., S C S

C;out SS SZ

Combinational vs. Sequential

e Combinational Circuit

e always gives the same output for a given set of inputs

* ex: adder always generates sum and carry,
regardless of previous inputs

e Sequential Circuit
e stores information

e output depends on stored information (state) plus input

* 50 a given input might produce different outputs,
depending on the stored information

e example: ticket counter
* advances when you push the button
* output depends on previous state
e useful for building “memory” elements and “state machines”

R-S Latch: Simple Storage Element

e Ris used to “reset” or “clear” the element — set it to zero.
e Sisused to “set” the element — set it to one.

e |f both R and S are one, out could be either zero or one.
e “quiescent” state -- holds its previous value
e note:ifais1, bis0, and vice versa

Clearing the R-S latch

outh output = 1, then change R to

Output changes to zero.

Then set R=1 to “store” value in quiescent state.

Setting the R-S Latch

outh output = 0, then change S to

Output changes to one.

Then set S=1 to “store” value in quiescent state.

R-S Latch Summary

e R=S=1

e hold current value in latch
e $=0,R=1

e setvaluetol
e R=0,S5=1

e setvaluetoO

e R=S=0
e both outputs equal one
e final state determined by electrical properties of gates
e Don’tdo it!

Gated D-Latch

 Two inputs: D (data) and WE (write enable)

e when WE =1, latch is set to value of D

e S=NOT(D),R=D

e when WE =0, latch holds previous value

D—e

} S

WE—

1

B;
B,

out

Register

e A register stores a multi-bit value.

 We use a collection of D-latches, all controlled by a common
WE.

e When WE=1, n-bit value D is written to register.
D D D

3 2 1

WE 1 1 1 1

PO IY LYY
YT

. Numtgresentmg I\/IuIt| bit Values

r bits from right (0) to left (n-1)
 just a convention -- could be left to right, but must be consistent

e Use brackets to denote range:
D[l:r] denotes bit | to bit r, from left to right

e May also see A<14:9>,
especially in hardware block diagrams.

Memory

e Now that we know how to store bits,

we can build a memory — a logicalkxm array of
stored bits.

k=2"
locations =

22 x 3 Me

word WE

address | J2word/ select |, b «—— input bits
WH / /
D
write // o —
enable jg%rtll %i
T | A %
_:DD J[. %
D= J[.
addréss 1 |
decoder
2 Q Q

output bits

Storage: Master-Slave Flipflop

* A pair of gated D-latches,
to isolate next state from current state.

To :
Combinational __:
Logic Circuit

From
Combinational

Logic Circuit

During 15t phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2" phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Storage

 Each master-slave flipflop stores one state bit.

 The number of storage elements (flipflops) needed
is determined by the number of states
(and the representation of each state).

e Examples:
e Sequential lock
* Four states — two bits

e Basketball scoreboard

e 7 bits for each score, 5 bits for minutes, 6 bits for seconds,
1 bit for possession arrow, 1 bit for half, ...

Complete Example

e A blinking traffic sign
* No lights on
e 1&2o0n
e 1,2,3, &40n
e 1,2,3,4,&50n

e (repeat as long as switch
is turned on)

o ©
DANGER

MOVE
RIGHT

Traffic Sign State Diagram

\ All off 0 \.1,20n

1) Switch on

State bit Sl 0 1

State bit S,

Outputs

@F
All on

Transition on each clock cycle.

Traffic Sign Truth Tables

Outputs Next State: S,’S,’
(depend only on state: S;S,) (depend on state and input)

In S, S,|S, S
0 X X |0

S, Sglz Y X 1 0 O0fo0

0 0|0 0 O 1 0 1]1

0O 1]/1 0 O 1 1 01

1 0|1 1 o0 1 1 110

1 1|11 1 1

o +—» O B+ O

Traffic Sign Logic

IN

Clock

OO

O

O

UAUAUAY

]~

Storage Element O

Storage Element 1

From Logic to Data Path

 The data path of a computer is all the logic used to
process information.

e See the data path of the LC-2 on next slide.

e Combinational Logic
e Decoders -- convert instructions into control signals
e Multiplexers -- select inputs and outputs
e ALU (Arithmetic and Logic Unit) -- operations on data

e Sequential Logic

e State machine -- coordinate control signals and data
movement

e Registers and latches -- storage elements

LC-2 Data Path

FR

G 155

(&

SRl

P g

COHNTRCGL. Lol

i +
“F i

—

T TS

mmm.;. ol

[1E:R || xETR|

L J ¥
[crTCR | cRTsE |

IyFIT

T-:mpm

	Digital Logic Structures��Ferdin Joe John Joseph
	Transistor: Building Block of Computers
	Simple Switch Circuit
	Logic Gates
	CMOS Circuit
	Inverter (NOT Gate)
	NOR Gate
	OR Gate
	NAND Gate (AND-NOT)
	AND Gate
	Basic Logic Gates
	More than 2 Inputs?
	Practice
	Logical Completeness
	Practice
	DeMorgan's Law
	Summary
	Building Functions from Logic Gates
	Decoder
	Multiplexer (MUX)
	Full Adder
	Four-bit Adder
	Combinational vs. Sequential
	R-S Latch: Simple Storage Element
	Clearing the R-S latch
	Setting the R-S Latch
	R-S Latch Summary
	Gated D-Latch
	Register
	Representing Multi-bit Values
	Memory
	22 x 3 Memory
	Storage: Master-Slave Flipflop
	Storage
	Complete Example
	Traffic Sign State Diagram
	Traffic Sign Truth Tables
	Traffic Sign Logic
	From Logic to Data Path
	LC-2 Data Path

