
Digital Logic Structures

Ferdin Joe John Joseph



Transistor: Building Block of 
Computers
• Microprocessors contain millions of transistors

• Intel Pentium II: 7 million
• Compaq Alpha 21264: 15 million
• Intel Pentium III: 28 million

• Logically, each transistor acts as a switch
• Combined to implement logic functions 

• AND, OR, NOT
• Combined to build higher-level structures

• Adder, multiplexor, decoder, register, …
• Combined to build processor

• LC-2



Simple Switch Circuit
• Switch open:

• No current through circuit
• Light is off
• Vout is +2.9V

• Switch closed:
• Short circuit across switch
• Current flows
• Light is on
• Vout is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage. 



Logic Gates
• Use switch behavior of MOS transistors

to implement logical functions: AND, OR, NOT.

• Digital symbols:
• recall that we assign a range of analog voltages to each

digital (logic) symbol

• assignment of voltage ranges depends on 
electrical properties of transistors being used

• typical values for "1": +5V, +3.3V, +2.9V
• from now on we'll use +2.9V



CMOS Circuit

• Complementary MOS
• Uses both N-type and P-type MOS transistors

• P-type
• Attached to + voltage
• Pulls output voltage UP when input is zero

• N-type
• Attached to GND
• Pulls output voltage DOWN when input is one

• For all inputs, make sure that output is either connected to GND or to +,
but not both!



Inverter (NOT Gate)

In Out
0 V 2.9 V

2.9 V 0 V

In Out
0 1
1 0

Truth table



NOR Gate

A B C
0 0 1
0 1 0

1 0 0

1 1 0
Note: Serial structure on top, parallel on bottom.



OR Gate

Add inverter to NOR.

A B C
0 0 0
0 1 1

1 0 1

1 1 1



NAND Gate (AND-NOT)

A B C
0 0 1
0 1 1

1 0 1

1 1 0
Note: Parallel structure on top, serial on bottom.



AND Gate

Add inverter to NAND.

A B C
0 0 0
0 1 0

1 0 0

1 1 1



Basic Logic Gates



More than 2 Inputs?
• AND/OR can take any number of inputs.

• AND = 1 if all inputs are 1.
• OR = 1 if any input is 1.
• Similar for NAND/NOR.

• Can implement with multiple two-input gates,
or with single CMOS circuit.



Practice

• Implement a 3-input NOR gate with CMOS.



Logical Completeness

• Can implement ANY truth table with AND, OR, NOT.
A B C D
0 0 0 0
0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1. AND combinations 
that yield a "1" in the 
truth table.

2. OR the results
of the AND gates.



Practice

• Implement the following truth table.

A B C
0 0 0
0 1 1

1 0 1

1 1 0



DeMorgan's Law
• Converting AND to OR (with some help from NOT)
• Consider the following gate:

A B
0 0 1 1 1 0
0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

BA ⋅BA BA ⋅

Same as A+B!

To convert AND to OR 
(or vice versa),

invert inputs and output.



Summary

• MOS transistors are used as switches to implement
logic functions.

• N-type: connect to GND, turn on (with 1) to pull down to 0
• P-type: connect to +2.9V, turn on (with 0) to pull up to 1

• Basic gates: NOT, NOR, NAND
• Logic functions are usually expressed with AND, OR, and NOT

• Properties of logic gates
• Completeness

• can implement any truth table with AND, OR, NOT
• DeMorgan's Law

• convert AND to OR by inverting inputs and output



Building Functions from Logic 
Gates

• We've already seen how to implement truth tables
using AND, OR, and NOT -- an example of 
combinational logic.

• Combinational Logic Circuit
• output depends only on the current inputs
• stateless

• Sequential Logic Circuit
• output depends on the sequence of inputs (past and present)
• stores information (state) from past inputs

• We'll first look at some useful combinational circuits,
then show how to use sequential circuits to store 
information.



Decoder

• n inputs, 2n outputs
• exactly one output is 1 for each possible input pattern

2-bit
decoder



Multiplexer (MUX)

• n-bit selector and 2n inputs, one output
• output equals one of the inputs, depending on selector

4-to-1 MUX



Full Adder

• Add two bits and carry-in,
produce one-bit sum and carry-out.

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1



Four-bit Adder



Combinational vs. Sequential

• Combinational Circuit
• always gives the same output for a given set of inputs

• ex: adder always generates sum and carry,
regardless of previous inputs

• Sequential Circuit
• stores information
• output depends on stored information (state) plus input

• so a given input might produce different outputs,
depending on the stored information

• example: ticket counter
• advances when you push the button
• output depends on previous state

• useful for building “memory” elements and “state machines”



R-S Latch: Simple Storage Element
• R is used to “reset” or “clear” the element – set it to zero.
• S is used to “set” the element – set it to one.

• If both R and S are one, out could be either zero or one.
• “quiescent” state -- holds its previous value
• note: if a is 1, b is 0, and vice versa

1

0

1

1

1

1

0

0

1

1

0

0

1

1



Clearing the R-S latch

• Suppose we start with output = 1, then change R to 
zero.

Output changes to zero.

Then set R=1 to “store” value in quiescent state.

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

1



Setting the R-S Latch

• Suppose we start with output = 0, then change S to 
zero.

Output changes to one.

Then set S=1 to “store” value in quiescent state.

1

1

0

0

1

1

0

1

1

1

0

0



R-S Latch Summary

• R = S = 1
• hold current value in latch

• S = 0, R=1
• set value to 1

• R = 0, S = 1
• set value to 0

• R = S = 0
• both outputs equal one
• final state determined by electrical properties of gates
• Don’t do it!



Gated D-Latch

• Two inputs: D (data) and WE (write enable)
• when WE = 1, latch is set to value of D

• S = NOT(D), R = D
• when WE = 0, latch holds previous value

• S = R = 1



Register
• A register stores a multi-bit value.

• We use a collection of D-latches, all controlled by a common 
WE.

• When WE=1, n-bit value D is written to register.



Representing Multi-bit Values
• Number bits from right (0) to left (n-1)

• just a convention -- could be left to right, but must be consistent
• Use brackets to denote range:

D[l:r] denotes bit l to bit r, from left to right

• May also see A<14:9>, 
especially in hardware block diagrams.

A = 0101001101010101

A[2:0] = 101A[14:9] = 101001

015



Memory

• Now that we know how to store bits,
we can build a memory – a logical k × m array of 
stored bits.

•••

k = 2n

locations

m bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)



22 x 3 Memory

address
decoder

word select word WE
address

write
enable

input bits

output bits



Storage: Master-Slave Flipflop
• A pair of gated D-latches, 

to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.



Storage

• Each master-slave flipflop stores one state bit.

• The number of storage elements (flipflops) needed
is determined by the number of states
(and the representation of each state).

• Examples:
• Sequential lock

• Four states – two bits
• Basketball scoreboard

• 7 bits for each score, 5 bits for minutes, 6 bits for seconds,
1 bit for possession arrow, 1 bit for half, …



Complete Example

• A blinking traffic sign
• No lights on
• 1 & 2 on
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch

is turned on)
DANGER
MOVE
RIGHT

1

2

3
4

5



Traffic Sign State Diagram

State bit S1 State bit S0

Switch on

Switch off

Outputs

Transition on each clock cycle.



Traffic Sign Truth Tables
Outputs
(depend only on state: S1S0)

S1 S0 Z Y X
0 0 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Lights 1 and 2

Lights 3 and 4

Light 5

Next State: S1’S0’
(depend on state and input)

In S1 S0 S1’ S0’
0 X X 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Switch

Whenever In=0, next state is 00.



Traffic Sign Logic

Master-slave
flipflop



From Logic to Data Path

• The data path of a computer is all the logic used to
process information.

• See the data path of the LC-2 on next slide.

• Combinational Logic
• Decoders -- convert instructions into control signals
• Multiplexers -- select inputs and outputs
• ALU (Arithmetic and Logic Unit) -- operations on data

• Sequential Logic
• State machine -- coordinate control signals and data 

movement
• Registers and latches -- storage elements



LC-2 Data Path


	Digital Logic Structures��Ferdin Joe John Joseph
	Transistor: Building Block of Computers
	Simple Switch Circuit
	Logic Gates
	CMOS Circuit
	Inverter (NOT Gate)
	NOR Gate
	OR Gate
	NAND Gate (AND-NOT)
	AND Gate
	Basic Logic Gates
	More than 2 Inputs?
	Practice
	Logical Completeness
	Practice
	DeMorgan's Law
	Summary
	Building Functions from Logic Gates
	Decoder
	Multiplexer (MUX)
	Full Adder
	Four-bit Adder
	Combinational vs. Sequential
	R-S Latch: Simple Storage Element
	Clearing the R-S latch
	Setting the R-S Latch
	R-S Latch Summary
	Gated D-Latch
	Register
	Representing Multi-bit Values
	Memory
	22 x 3 Memory
	Storage: Master-Slave Flipflop
	Storage
	Complete Example
	Traffic Sign State Diagram
	Traffic Sign Truth Tables
	Traffic Sign Logic
	From Logic to Data Path
	LC-2 Data Path

