Log graphs

1The graph below on semi-log paper shows the activity of a radioactive sample over time.

The half-life of the sample is close to ...

- **a** 180 days
- **b** 55 days
- **c** 28 days
- **d** 8 day

2 The period T of the earth in near circular orbit round the sun is given by $T^2 = kr^3$... where r is the radius of the orbit and k is a constant.

The slope of a plot of $\log T$ against $\log r$ will be ...

- **a** 3/2
- **b** 2
- **c** 3
- **d** 2/3

Note: for this, and similar questions, take logs of both sides of the equation. In this case ... $2 \log T = 3 \log r + \log k$

3 The flow rate U of water in a long pipe is a function of the radius r. If the relationship is a power law of the form $U = kr^n$, a plot of log U against log r is a straight line.

In this case the value of $\log k$ is:

- **a** the slope of the graph.
- **b** the inverse of the slope.
- \mathbf{c} the intercept on the log U axis.
- $\underline{\mathbf{d}}$ the intercept on the log r axis

4 In an adiabatic change the volume V and pressure P of the gas confined to a cylinder are given by $PV^{\gamma} = k$ where γ is the ratio of specific heats.

Which graph will be a straight line?

a P against $\log V$ **b** $\log P$ against 1/V **c** P against 1/V **d** $\log P$ against $\log V$

5 The gravitational field g near the earth is proportional to the inverse square of the distance r to the centre. Which one of the graphs A to D could not show $\log g$ plotted against $\log r$?

6 The graph below is a plot of log y against log x for two variables x and y.

The relationship between x and y can be written as $y = kx^n$.

Find the values of k and n with likely errors.