Projectile motion questions

- 1 A volcanic eruption blasts a rock into the air with an initial velocity of 80.0 m/s at an angle of elevation of 30.0 degrees. (Take g to be -10m/s².)
 - a Find the time of fight.
 - **b** What is the horizontal distance traveled by the rock?
 - c Determine the velocity of the rock just before impact.
 - **d** Calculate the maximum height of the rock above the ground.

2 A projectile is fired with an initial velocity v_i at an angle of elevation θ . It lands on an incline (angle ϕ) at a distance d as shown.

Show that the projectile travels a distance d up the incline, where $2v^2\cos\theta\sin(\theta-\phi)$

$$d = \frac{2v_i^2 \cos \theta_i \sin(\theta_i - \phi)}{g \cos^2 \phi}$$

(2)
$$\begin{pmatrix}
\zeta \\
y
\end{pmatrix} = \begin{pmatrix}
u_{1} \\
u_{2}
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
0 \\
-10
\end{pmatrix} e^{2}$$
Resolving the vector velocidy

and acceleration along the
inchie and proposedient to it...
$$\begin{pmatrix}
d \\
0
\end{pmatrix} = \begin{pmatrix}
v = cos (\theta - \phi) \\
v = sin (\theta - \phi)
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
-g = sin \phi \\
-g = cos \phi
\end{pmatrix} + \frac{2}{2} \frac{sin (\theta - \phi)}{g = cos \phi}$$

$$d = \frac{2}{2} \frac{v}{u_{1}} \frac{sin (\theta - \phi)}{g = cos \phi} + \frac{g = sin \phi}{2g^{2} = cos \phi} + \frac{g = sin \phi}{2g^{2} = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin (\theta - \phi) \right] sin \theta + \frac{1}{2} \frac{sin \phi}{g = cos \phi}$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi = cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi = sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi - sin \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi} \left[cos \phi$$

$$= \frac{2}{2} \frac{v^{2}}{g = cos \phi$$

3 A Hydra base is located at the origin (0, 0). The Hydras plan to launch a projectile to hit a hospital directly to the East with a velocity of 50 km/h at an angle of elevation of 30°.

An Avenger base is located 50 km South and 100 km East of the origin. The Avengers have a canon aimed to the North.

Question: At what initial speed and angle of elevation should the Avengers fire to intercept the Hydras projectile if both projectiles are fired at the same time and $g = 10 \text{m/s}^2$?

(3)

N

100 km East ord height h the ---

(100) =
$$\begin{pmatrix} 50 & \cos 30 \\ 50 & \sin 30 \end{pmatrix} \in -\frac{1}{2} \begin{pmatrix} 6 \\ -10 \end{pmatrix} \in 2$$
 $t = \frac{100 \cdot \sqrt{3}}{50}$
 $= \sqrt{3} = \frac{100 \cdot \sqrt{3}}{50} = \sqrt{3} = (25\sqrt{3} - 15) \text{ here}$

The introoply shell $\begin{pmatrix} 50 \\ h \end{pmatrix} = \begin{pmatrix} 401 \\ 401 \end{pmatrix} \sqrt{3} + \frac{1}{2} \begin{pmatrix} 6 \\ -10 \end{pmatrix} \cdot 3$

and $401 = \frac{50}{\sqrt{3}}$ and $401 = \frac{25}{\sqrt{3}} + 15$ builth